
www.manaraa.com

Graduate School Form
30 Updated

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By

Entitled

For the degree of

Is approved by the final examining committee:

To the best of my knowledge and as understood by the student in the Thesis/Dissertation
Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32),
this thesis/dissertation adheres to the provisions of Purdue University’s “Policy of
Integrity in Research” and the use of copyright material.

Approved by Major Professor(s):

Approved by:
Head of the Departmental Graduate Program Date

www.manaraa.com

REALTIME DYNAMIC BINARY INSTRUMENTATION

A Thesis

Submitted to the Faculty

of

Purdue University

by

Mike Du

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science

August 2016

Purdue University

Indianapolis, Indiana

www.manaraa.com

ii

To my family.

www.manaraa.com

iii

ACKNOWLEDGMENTS

I would first like to thank my advisor, Dr. James H. Hill, for his guidance, advice,

and knowledge, without whom, this work would not have been possible. I would also

like to thank Dr. Rajeev R. Raje and Dr. Mihran Tuceryan for being on my thesis

defense committee. Another thanks goes out to Dennis Feiock and Manjula Peiris

for their assistance in answering various questions and helping debug some issues I

faced. Finally, I want to thank my family and friends for their support.

www.manaraa.com

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

ABSTRACT . viii

1 INTRODUCTION . 1
1.1 Thesis Organization . 2

2 RELATED WORK . 4
2.1 Taking Advantage of Unused Processors 4
2.2 Data Buffering . 5

3 BACKGROUND . 7
3.1 Pin . 7
3.2 Binary JSON . 12

4 DESIGN AND IMPLEMENTATION OF REBIS 14
4.1 Preliminary Design Challenges . 14
4.2 Design of ReBIS . 15
4.3 Implementation of ReBIS . 17

4.3.1 The Buffering System . 17
4.4 The Networking Library . 20

5 RESULTS OF REBIS . 22
5.1 Generating Results . 22

5.1.1 BSON Benchmarking . 22
5.1.2 Networking . 23
5.1.3 ReBIS . 24

5.2 BSON . 24
5.2.1 BSON Document Marshalling 24
5.2.2 BSON Element Searching 26
5.2.3 BSON Document Demarshalling 26
5.2.4 BSON Element Deletion . 27
5.2.5 Ease of use . 28

5.3 Networking . 29
5.4 ReBIS . 30

www.manaraa.com

v

Page

6 CONCLUDING REMARKS . 33

REFERENCES . 35

www.manaraa.com

vi

LIST OF TABLES

Table Page

5.1 % diff. runtimes of ReBIS with vs. without binding of instrumentation
and analysis threads to separate CPU cores. 32

www.manaraa.com

vii

LIST OF FIGURES

Figure Page

4.1 An overview of the system. Arrows indicate the flow of data. 16

5.1 Performance results for writing various datatypes to a BSON-encoded doc-
ument. 25

5.2 Performance results for searching a BSON document. 26

5.3 Performance results for reading a BSON-encoded document containing
various datatypes, and create an implementation specific BSON docu-
ment. 27

5.4 Performance results for deleting various datatypes from a BSON docu-
ment. 28

5.5 Graph showing the increase in overhead caused by adding a send of the
data in every analysis routine. 30

5.6 Graph showing the effect of increased messages sent vs the increase in
overhead. 31

www.manaraa.com

viii

ABSTRACT

Du, Mike. MS, Purdue University, August 2016. Realtime Dynamic Binary Instru-
mentation. Major Professor: James H. Hill.

This thesis presents a novel technique and framework for decreasing instrumenta-

tion overhead in software systems that utilize dynamic binary instrumentation. First,

we introduce a lightweight networking framework combined with an easily extensible

BSON implementation as a heavy analysis routine replacement. Secondly, we bind

instrumentation and analysis threads to non-overlapping cpu cores—allowing analysis

threads to execute faster. Lastly, we utilize a lock-free buffering system to bridge the

gap between instrumentation and analysis threads, and minimize the overhead to the

instrumentation threads. Using this combination, we managed to write a dynamic

binary instrumentation tool (DBI) in Pin using Pin++ that is almost 1100 % faster

than its counterpart DBI tool with no buffering, and less than 500% slower than a

similar tool with no analysis routine.

www.manaraa.com

1

1 INTRODUCTION

Dynamic binary instrumentation (DBI) [1] is a powerful tool that enables users to

obtain detailed runtime information about a program. Uses for these tools include

debugging [2, 3], cache simulation [4], parallel program analysis [5] and vulnerability

detection [6], among others. Examples of DBI frameworks include, but are not limited

to Pin [7], Valgrind [8], and DynamoRIO [9].

A benefit of DBI is that it can be run on any application without the need for the

source code being available. This enables users to analyze and modify any program

without being dependent on the source code. It also allows users to collect more spe-

cific data about their programs compared to using special hardware. However, this

comes at a cost. Usage of DBI typically incurs a large performance impact [3,10–12].

As research and experience has shown, a program undergoing DBI can run anywhere

from a few percent slower, to hundreds, or even thousands of times slower. The mag-

nitude of performance degradation, however, depends heavily on the level and type of

instrumentation and analysis performed on the program under instrumentation. For

example, instrumenting every instruction in a program will have greater impact on

performance when compared to instrumenting every function call.

Many techniques have been proposed to minimize this overhead DBI has on its

programs undergoing instrumentation. These techniques range from buffering instru-

mented data and analyzing on a separate thread [3, 11] to forking the entire process

and instrumenting the clone [12]. The common theme for each technique is to take

advantage of under-utilized cores on a system. This, approach, however, may still

create unintended overhead if the original process is multithreaded. Moreover, it can

be taxing in terms of processor or memory usage. Unfortunately, no DBI can escape

this fact; it can only hope to reduce the effects.

www.manaraa.com

2

To address the aforementioned shortcomings by using multiple cores to support

DBI, we introduce Realtime Binary Instrumentation System (ReBIS), a lightweight,

portable networking and buffering framework to Pin++ [13], a C++ framework for

authoring analytical tools for Pin. The goal of ReBIS is two-fold. First, we aim to

introduce a novel method for reducing instrumentation overhead while also creating

the proper abstractions to enable users to simultaneously perform instrumentation

on multiple systems. Second, we aim to allow the instrumented programs to commu-

nicate with each other and/or with a central server. The former allows instrumented

programs to coordinate with each other, and the latter allows each program to offload

analytical operations to resources outside of the instrumentation environment.

Our work can be separated into two parts. The first part focuses on creating a

simple interface that enables users to perform network communications in a Pintool

on both Linux and Windows systems. Because Pin is designed to work on these

systems, that is where we focused our efforts. Our framework, however, can easily

be extended to support other systems as needed. The second part consists of a lock-

free buffering system designed for fast writes to minimize overhead. This buffering

system is intended to bridge the communication gap between our instrumentation

and analysis threads. Binding of the instrumentation and analysis threads to separate

CPUs was also used to enable our analysis threads to process data more in realtime.

For an application that spawned 240 threads and using a buffer size of 50, ReBIS

with CPU binding was able to outperform no binding by a factor of 385%. To achieve

similar speeds with no binding, a buffer size of 500 was required. Compared to a

similar Pintool that instead of buffering the data and then sending, simply performed

a send of each piece of data, ReBIS was 1098% faster.

1.1 Thesis Organization

This thesis is organized in the following manner. Chapter 2 will discuss work

done by other researchers to help lessen instrumentation overhead. Chapter 3 pro-

www.manaraa.com

3

vides some background of the tools and specifications we used. Chapter 4 discusses

preliminary work, the design of the system, and various implementation details. In

chapter 5, a description of our tests as well as their results will be displayed, with a

discussion and lessons learned. Lastly, Chapter 6 provides concluding remarks and

future research directions.

www.manaraa.com

4

2 RELATED WORK

This chapter compares and contrasts our work to other similar techniques. In partic-

ular, we investigate techniques in DBI that use multiple processors and data buffering

to reduce instrumentation overhead and improve performance.

2.1 Taking Advantage of Unused Processors

A recent trend in decreasing instrumentation overhead is to perform as much

instrumentation and analysis as possible on separate threads with hopes that the ap-

plication under instrumentation is not fully utilizing all of the CPUs. This assumption

is generally safe to make, because few applications are optimized enough to use, or

require the use of all of the cores on a processor [11]. Thus, many techniques involve

forking the original process and instrumenting the forks so the original application

can run unhindered.

For example, one such technique is called Shadow Profiling [12]. Shadow Profiling

works by forking the application at various points of execution, and then perform-

ing instrumentation on those forked shadow processes. The profiling tool uses a

sample size variable and a load variable to determine how many instructions each

shadow process should execute and how many concurrent shadow processes should

exist, respectively. This allows the user to control both coverage and overhead of

the instrumentation. Using various combinations of sample size and load, Moseley et

al. (2007) managed to obtain under 1% overhead with lower sample sizes and loads,

and up to 19% overhead with higher values.

Another approach is called SuperPin [14]. This technique did not achieve as low

overhead as Shadow Profiling, but guarantees complete coverage. Moreover, each

slice (or shadow process) in SuperPin is spawned at points determined by the tool,

www.manaraa.com

5

rather than by the user. SuperPin can guarantee complete coverage by registering

signals each time a new slice is spawned, and ensuring that the previous slice knows

exactly when to terminate. Using this technique, SuperPin typically managed to

outperform native Pintools by 200% to 600%, depending on the application being

instrumented—typically with overhead less than 100%.

While these techniques managed to obtain very low application impact, they gen-

erally do not solve the problem of trying to instrument an application which requires

most, if not all, of a system’s processing resources. In light of this, further techniques

were introduced to reduce instrumentation overhead for such applications.

2.2 Data Buffering

In the context of Pin DBI, prior research has focused on creating faster buffers for

decreasing overhead. For example, Upton et al. [15]. introduced a new fast buffer-

ing application programming interface (API) for Pin. This buffering API achieved

approximately a 4X speedup compared to the fastest buffering system previously

available in Pin.

In an effort to reduce the instrumentation time of DBIs, many buffering techniques

were implemented to enable a batch-analysis of collected data. In particular, new

systems for separating the collection and analysis of data onto separate threads were

created. Using such systems, extra overhead from forking the original process into

separate processes is removed. Instead, it focuses on reducing overhead by buffering

the collected data, and the subsequent batch-processing on a separate thread.

Cache-friendly Asymmetric Buffering (CAB) [11] introduces a new buffering sys-

tem based upon a cyclic buffer. CAB utilizes two main principles to minimize over-

head: (1) writing to the buffer should be as fast as possible; and (2) there should be

no contention between producer and consumer threads. This differs slightly from our

work in that we do allow some contention between instrumentation (producer) and

analysis (consumer) threads to ensure complete coverage; whereas, CAB will over-

www.manaraa.com

6

write existing data if the consumers cannot catch up to the producers. To prevent this

case from occurring, CAB also implements a sampling mode where consumers sample

from the buffer rather than consume the entire buffer. Our framework mitigates this

problem by implementing a lightweight, universally usable analysis routine allowing

the overall runtime to be more heavily impacted by the instrumentation rather than

analysis.

Pipelined Profiling and Analysis (PiPA) [3] is another system that performs anal-

ysis in parallel to the execution of the application. PiPA works by moving collected

profiles to a processing thread, and the distributing the profiles to multiple analysis

threads for analysis in parallel. This approach is in contrast to our work. This is be-

cause our approach does not utilize an intermediate processing thread, and typically

requires a lower number of analysis threads.

Deferred analysis [16], built upon the buffering strategy, by introducing a novel

adaptive analysis strategy, where based on the total CPU usage, analysis could occur

on the same threads as the instrumentation, or be run on separate threads. This en-

ables users to take advantage of underutilized CPUs when available, but also allowing

users to avoid the extra overhead from inter-thread communication when underuti-

lized CPUs are not available. While our work does not provide this adaptability, we

were able to push most of the inter-thread communication overhead to our analysis

threads using our CPU binding technique, which run on a separate CPU core than the

data collection threads. In the end, our approach has less effect on overall runtime.

www.manaraa.com

7

3 BACKGROUND

Before we discuss our technique for decreasing instrumentation overhead, we will first

provide a brief overview of Pin and Pin++, the DBI frameworks that we used. This

is followed by an overview of BSON, the data interchange format chosen to be used

in our framework.

3.1 Pin

Pin [7] is a popular dynamic binary instrumentation framework developed by Intel.

Tools created using Pin are called Pintools, which can be reused to instrument any

program without needing to recompile a new tool. Pin can be run in two different

modes, JIT (just-in-time), and probe mode. JIT mode runs the program in a virtual

machine, and Pin inserts the instrumentation on an as-needed basis. In probe mode

on the other hand, Pin inserts jump instructions to call the instrumentation functions

where they are needed, so that the program can run natively. Probe mode, however,

does not allow the insertion for very small units of a program, such as every instruction

that JIT mode can. Not running in a virtual machine allows for a decrease in overhead,

but results in a large reduction of the available API.

Listing 3.1 shows an example Pintool written in native Pin which counts the in-

structions of an application. Line 51 initializes the Pintool, while line 53 opens the

file that will be written to when the Pintool terminates. Line 57 and the Instruction

function tells Pin to insert the docount function before every instruction in the appli-

cation. Line 61 tells Pin to insert the Fini function after the application terminates.

Finally, line 64 allows the application being instrumented to start execution.

1 #inc lude <iostream>

2 #inc lude <fstream>

3 #inc lude ”pin .H”

www.manaraa.com

8

4

5 ofstream OutFile ;

6

7 // The running count o f i n s t r u c t i o n s i s kept here

8 // make i t s t a t i c to he lp the compi le r opt imize docount

9 s t a t i c UINT64 icount = 0 ;

10

11 // This func t i on i s c a l l e d be f o r e every i n s t r u c t i o n i s

12 // executed

13 VOID docount () { i count++; }

14

15 // Pin c a l l s t h i s func t i on every time a new i n s t r u c t i o n

16 // i s encountered

17 VOID In s t r u c t i o n (INS ins , VOID ∗v)

18 {

19 // I n s e r t a c a l l to docount be f o r e every i n s t r u c t i on ,

20 // no arguments are passed

21 INS In s e r tCa l l (ins , IPOINT BEFORE, (AFUNPTR) docount ,

22 IARG END) ;

23 }

24

25 KNOB<s t r i ng> KnobOutputFile (KNOBMODEWRITEONCE,

26 ” p in t oo l ” , ”o” , ” inscount . out” ,

27 ” s p e c i f y output f i l e name”) ;

28

29 // This func t i on i s c a l l e d when the app l i c a t i on e x i t s

30 VOID Fin i (INT32 code , VOID ∗v)

31 {

32 // Write to a f i l e s i n c e cout and c e r r maybe c l o s ed by

33 // the app l i c a t i on

34 OutFile . s e t f (i o s : : showbase) ;

35 OutFile << ”Count ” << i count << endl ;

36 OutFile . c l o s e () ;

37 }

38

39 INT32 Usage ()

40 {

41 c e r r << ”This t o o l counts the number o f dynamic ” ;

42 c e r r << ” i n s t r u c t i o n s executed ” << endl ;

43 c e r r << endl << KNOB BASE : : StringKnobSummary () ;

44 c e r r << endl ;

45 re turn −1;

46 }

47

www.manaraa.com

9

48 i n t main (i n t argc , char ∗ argv [])

49 {

50 // I n i t i a l i z e pin

51 i f (PIN Ini t (argc , argv)) re turn Usage () ;

52

53 OutFile . open (KnobOutputFile . Value () . c s t r ()) ;

54

55 // Reg i s t e r I n s t r u c t i o n to be c a l l e d to instrument

56 // i n s t r u c t i o n s

57 INS AddInstrumentFunction (In s t ruc t i on , 0) ;

58

59 // Reg i s t e r F in i to be c a l l e d when the app l i c a t i o n

60 // e x i t s

61 PIN AddFiniFunction (Fini , 0) ;

62

63 // Star t the program , never r e tu rn s

64 PIN StartProgram () ;

65

66 re turn 0 ;

67 }

Listing 3.1: An example Pintool in native Pin [17]

Pin++

Pin++ [13] is a C++ framework designed to improve upon native Pin by en-

hancing component reusability, simplifying Pintool creation, and in some cases, even

reducing the instrumentation overhead. Pintools written using Pin++ can be run

just like any other Pintool. Pin++ achieves this decreased overhead by utilizing tem-

plate metaprogramming. Since Pin++ is written in C++, it allows for the creation

of Pintools using a much higher level of abstraction and much more organized set of

tools than compared to using native Pin.

Pintools written in Pin++ are split up into 3 parts, a Tool, a class which repre-

sents the tool itself, Instruments, which represent the various levels of granularity

of instrumentation, and Callbacks, which represent the functions that can be in-

serted by the instruments. Such Pintools may have any number of Instruments and

Callbacks, but must contain at least one Tool instance.

www.manaraa.com

10

Listing 3.2 shows an example Pintool written in Pin++ that counts the instruc-

tions of an application. Its functionality is identical as the Pintool in Listing 3.1.

Lines 47 to 71 define the Tool, which enables users to insert itself as a callback to

certain points (line 52), such as during application termination, which calls the han-

dle fini function. The Tool is also typically where the Instruments are declared

and instantiated; in this case, in the private member section on line 66. Lines 28

to 45 define an Instrument, in this case, an Instruction Instrument, which repre-

sents an instruction-level granularity. Line 35 says that the Callback declared and

instantiated on line 44, which is also a private member, should be inserted before

every instruction. The Callback defined by lines 7 to 26 contains the handle analyze

function which the Instrument tells Pin to insert, as well as the state. Finally, line

78 acts as the main function, which initializes Pin, instantiates the Tool, and starts

the application.

1 #inc lude ”pin++/Cal lback . h”

2 #inc lude ”pin++/In s t ruc t i on In s t rument . h”

3 #inc lude ”pin++/Pintoo l . h”

4

5 #inc lude <fstream>

6

7 c l a s s docount : pub l i c OASIS : : Pin : : Cal lback

8 <docount (void)>

9 {

10 pub l i c :

11 docount (void)

12 : count (0) { }

13

14 void hand le ana lyze (void)

15 {

16 ++ th i s−>count ;

17 }

18

19 UINT64 count (void) const

20 {

21 re turn th i s−>count ;

22 }

23

24 p r i va t e :

www.manaraa.com

11

25 UINT64 count ;

26 } ;

27

28 c l a s s I n s t r u c t i o n :

29 pub l i c OASIS : : Pin : : I n s t ruc t i on In s t rument

30 <I n s t ruc t i on>

31 {

32 pub l i c :

33 void handle inst rument (const OASIS : : Pin : : Ins & in s)

34 {

35 th i s−>c a l l b a c k . i n s e r t (IPOINT BEFORE, i n s) ;

36 }

37

38 UINT64 count (void) const

39 {

40 re turn th i s−>c a l l b a c k . count () ;

41 }

42

43 p r i va t e :

44 docount c a l l b a c k ;

45 } ;

46

47 c l a s s inscount : pub l i c OASIS : : Pin : : Tool <inscount>

48 {

49 pub l i c :

50 inscount (void)

51 {

52 th i s−>e n a b l e f i n i c a l l b a c k () ;

53 }

54

55 void h a nd l e f i n i (INT32 code)

56 {

57 std : : o f s t ream fout (o u t f i l e . Value () . c s t r ()) ;

58 fout . s e t f (i o s : : showbase) ;

59 fout << ”Count ” << th i s−>i n s t r u c t i o n . count () ;

60 fout << std : : endl ;

61

62 fout . c l o s e () ;

63 }

64

65 p r i va t e :

66 I n s t r u c t i o n i n s t r u c t i o n ;

67

68 /// @{ KNOBS

www.manaraa.com

12

69 s t a t i c KNOB <s t r i ng> o u t f i l e ;

70 /// @}

71 } ;

72

73 KNOB <s t r i ng> i n scount : : o u t f i l e (KNOBMODEWRITEONCE,

74 ” p in t oo l ” , ”o” ,

75 ” inscount . out” ,

76 ” s p e c i f y f i l ename ”) ;

77

78 DECLARE PINTOOL (inscount) ;

Listing 3.2: An example Pintool in Pin++ [18]

3.2 Binary JSON

Binary JSON (BSON) [19] is a data-interchange format based on JavaScript Ob-

ject Notation (JSON) [20]. JSON provides user readability, combined with ease of

marshalling and demarshalling. BSON improves upon JSON by providing faster scan

speed with the addition of a length field to all variable length types (i.e., documents,

arrays, strings and binary types). The drawback of BSON is that in some cases,

BSON encoding can use more space than JSON encoding. BSON improves upon

JSON further by providing a broader set of explicit types. BSON even allows users

to specify their own types instead of relying on user code to differentiate between

different instances of the same type as long as the parser knows how to handle the

new types.

A BSON-encoded document begins with a 4-byte integer, encoded in binary, which

represents the size of the document, including the terminating null byte, 0x00. A doc-

ument can then contain any number of elements, which consist of a byte representing

the type of the element, followed by a null-terminated key, followed by the value of

the element. For example, if one wished to encode foo:42, where foo is the key, and

42 is the value, one would obtain the following BSON-encoded document:

(0x0E 0x00 0x00 0x00) 0x10 (f o o 0x00) (0x2A 0x00 0x00 0x00) 0x00

www.manaraa.com

13

The brackets are simply there for illustration purposes, and are not actually in the

encoded document. The first set of brackets surround the document size, which in this

case is 14, note the little-endian format. The next byte represents the element type,

in this case an int32. The second set of brackets surround the null-terminated key,

while the third surrounds the value, in this case 42. Lastly, the 0x00 byte terminates

the document. In JSON, this would instead look like:

{ f oo :42}

In this case, the braces are part of the format.

Both Pin++ and BSON were integral parts of our framework, as the next Chapter

discusses.

www.manaraa.com

14

4 DESIGN AND IMPLEMENTATION OF REBIS

As seen in Figure 4.1, the proposed system consists of multiple parts, the buffering

system, a data marshalling component, BiSON (our BSON implementation), and a

networking portion. The goal of providing these pieces together is to provide a basic

framework which users can use to author low-overhead Pintools with networking

capabilities. In this chapter, we will discuss the design goals and methodologies of

each of these components, followed by a closer look at some of the implementation

details.

4.1 Preliminary Design Challenges

Initially, the main goal of this work was to design and implement a system that

allowed the user could transmit data over a network using a Pintool. To this end, it

was decided (1) to use a third party networking library to abstract away the low level

socket details; (2) be usable in both Linux and Windows environments; and (3) and

provide some higher level functionality, such as support for quality of service (QoS),

multiple protocols, etc.

The first attempt was to use OpenDDS [21], which provides an expansive fea-

ture set, including portability, support for multiple transport protocols, and QoS,

while also being easy to use. Unfortunately, attempting to compile a Pintool using

OpenDDS showed that it was incompatible with Pin in a Windows environment. This

was due to having to enclose all Windows-related code in a namespace, but doing so

with OpenDDS resulted in issues that were too hard to resolve. We therefore sought

a different solution.

The Adaptive Communication Environment (ACE) [22] was the next choice, which

also happens to be the framework upon which OpenDDS is built. Like OpenDDS,

www.manaraa.com

15

ACE provides a rich set of features, and is easy to use. Unlike OpenDDS, ACE

encloses all of its code inside its own namespace. Hoping it solved the OpenDDS

problems, we therefore ported critical parts, such as its mutex and threading frame-

work to Pin. This is because Pin provides its own application programming interface

(API) for these concepts for proper instrumentation of the target program.

Fortunately, ACE was designed to be easily portable to other operating systems

and/or runtime environments. Unfortunately, the port was not clean such that ACE

mutexes and threads utilized the Pin API instead while other features used native

system calls. Moreover, we learned that Pin was not able to load any Pintool that

links to the ACE library. This is because ACE performed static initialization, which

caused the Pintool to have a segmentation fault at load time. The problem was

effectively a non-debuggable problem.

Given the previously failed attempts to use a third-party networking library, the

choice was made to write a new, simple networking library. The only requirements for

this library were that it be portable between Linux and Windows systems, and that it

provide support for sending and receiving data over a TCP and/or UDP connection.

The remainder of this chapter discusses the design and solution to this need.

4.2 Design of ReBIS

ReBIS operates by taking advantage of the multiple cores in modern processors.

In particular, ReBIS designates one or more cores for use by the analysis thread, and

pushes instrumentation concerns to the remaining cores. This approach is illustrated

in Figure 4.1. As shown in Figure 4.1, each instrumentation thread also is associated

with a single buffer. This allows for writing to the buffers as fast as possible because

the data collection threads do not have to compete with each other trying to write

to a buffer.

In an effort to make analysis threads as fast as possible, their task is only to take

the instrumentation data and send it over the network using our custom networking

www.manaraa.com

16

Figure 4.1.: An overview of the system. Arrows indicate the flow of data.

www.manaraa.com

17

and marshalling libraries. The networking and marshalling libraries were designed to

be user-friendly, fast, and for the marshalling library, easily extensible. The Binary

JavaScript Object Notation (BSON) implementation was selected for the marshalling

library because it offers a good combination of user readability and parsing speed,

with a large variety of supported datatypes by default. Using this approach, it is

hoped that analysis time can be reduced by offloading any heavy analysis routines

to another system. For example, this approach would allow applications running on

different machines to transmit instrumentation data to central location for storage

and offline analysis.

4.3 Implementation of ReBIS

In this section, we will discuss various implementation details of ReBIS, including

encountered issues and its solutions.

4.3.1 The Buffering System

The buffering system can be split into two parts: (1) the interface it exposes

to the instrumentation and analysis threads; and (2) the internal workings of the

system. The interface exposed to the instrumentation threads can be summed up in

two functions. Before an instrumentation thread can write to the buffers, it must first

create a buffer that the buffering system will associate with that particular thread by

calling the create buffer method. This ensures all instrumentation threads can write

to the buffers at the same time without utilizing locks.

Algorithm 1 outlines the code executed during a write to buffer operation. It

should be noted that a double buffer was utilized. As described in Algorithm 1, first

the data is written to the buffer, and the position in the buffer incremented to the

next available location. When the buffer is full, it is swapped with the second buffer.

This allows for continual writing to the buffer while the other buffer is waiting to be

www.manaraa.com

18

consumed. The full buffer is then consumed by the analysis thread, which runs the

pseudocode found in Algorithm 2.

Algorithm 1 Pseudocode for writing to a buffer.

1: write data to next available location

2: if main buffer full then

3: while backup buffer full do

4: yield current thread

5: end while

6: swap main buffer with backup buffer

7: store number of written elements in buffer

8: backup buffer full = TRUE

9: end if

The interface exposed to the analysis threads is simpler, consisting of only one

method. This method is a register method that the analysis thread calls to register

itself as an analysis thread. The analysis thread then continuously loops through

the buffers and passes full buffers to a registered consumer. Access to this loop is

prevented by first having to acquire a readlock on line 2 of Algorithm 2. This allows

multiple consumers to operate concurrently, and prevents contention when a new

buffer is being created, which acquires the associated writelock. The double-checked

locking pattern [23] on lines 4-6 is used on a lock associated with each individual

buffer to remove the possibility of multiple threads consuming the same buffer at

the same time, and improves runtime by only performing a check when the buffer

is not full, rather than acquiring a lock. Finally, lines 14-21 ensure that when the

application is terminating, all remaining buffers are consumed before the analysis

thread can terminate.

www.manaraa.com

19

Algorithm 2 Pseudocode for analysis threads

1: while TRUE do

2: acquire global buffers readlock

3: for double buffer in buffers do

4: if backup bufferisfull then

5: acquire double buffer lock

6: if backup bufferisfull then

7: consume backup buffer

8: backup buffer full = FALSE

9: end if

10: release double buffer lock

11: end if

12: end for

13: release global buffers readlock

14: if Pin::is process exiting then

15: for double buffer in buffers do

16: if backup bufferisfull then

17: goto 1

18: else return

19: end if

20: end for

21: end if

22: end while

www.manaraa.com

20

4.4 The Networking Library

The purpose of designing a networking library was to ensure that a user could

easily send packets over a network while running in the Pin environment. Initial

attempts included trying to leverage the ACE networking library. As discussed in

Section 4.1, porting ACE to Pin was hard, and created unresolvable problems. The

networking library is based on the acceptor-connector [24] pattern, and is designed

to be as simple as possible. For example, users are able to obtain a connected socket

in about 5 lines of code.

The networking library uses the BSON standard as its protocol. We selected

BSON because it allows data transmitted over the network to be stored directly

into a database like MongoDB [25] without any additional unmarshalling. This will

improve performance receiving data since MongoDB is designed to efficiently handle

writing data [26]. Our BSON implementation was created to be compatible with Pin.

It also allows for fast and easy data modification, and is guaranteed to work with our

networking library in a Pintool.

When compared to other BSON implementations, our library allows users to add

custom data types that can be marshalled and unmarshalled like the data types

native to the BSON standard. In order to do so, the user must first implement

our Value interface, shown in Listing 4.2, for their new type. An important note,

the write and read methods must be able to write and read their value to a buffer.

Also, the type method should return a unique BSON Type, which is just a character.

Next, the user must extend the Value Factory class to support their custom type.

Listing 4.1 shows the relevant value factory interface. To properly extend this class,

the user must implement a new Value * create my type (void) function. Then,

by inserting their unique BSON Type and create my type method into the protected

map , their Value Factory subclass is complete.

Once the custom Value and Value Factory are implemented, the user integrates

it into the framework by calling the static set instance method before using any bison

www.manaraa.com

21

functionality, passing in their new class as a template parameter. This way, the user-

defined Value Factory subclass is used instead of the base class, and all subsequent

interactions with the framework can utilize the new type.

1 c l a s s Value Factory

2 {

3 pub l i c :

4 template <c l a s s T>

5 s t a t i c void s e t i n s t a n c e (void) ;

6

7 Value ∗ c r e a t e v a l u e (const char c) ;

8

9 template <c l a s s T>

10 T ∗ c r e a t e v a l u e (void) ;

11 protec t ed :

12 typede f Value ∗ (Value Factory : : ∗ c r e a t e f un c) (void) ;

13 typede f std : : map <char , c r ea t e func> value map ;

14 value map map ;

15 } ;

Listing 4.1: Relevant Value Factory interface

1 c l a s s Value

2 {

3 pub l i c :

4 /// Destructor

5 v i r t u a l ˜Value (void) ;

6

7 /// Write t h i s Value to the wr i t e r

8 v i r t u a l void wr i t e (BSON Writer & wr i t e r) const = 0 ;

9

10 /// Set t h i s Value based on the contents o f the reader

11 v i r t u a l bool read (BSON Reader & reader) = 0 ;

12

13 /// Return a unique i d e n t i f i e r f o r t h i s Value

14 v i r t u a l BSON Type type (void) = 0 ;

15

16 protec ted :

17 /// Defau l t con s t ruc to r

18 Value (void) ;

19 } ;

Listing 4.2: Value interface

www.manaraa.com

22

5 RESULTS OF REBIS

In this chapter, we will outline some of the major benchmarking and experimental

results.

5.1 Generating Results

All results were generated using machines using an AMD Opteron 4130 2.6GHz

quad-core processor running Ubuntu 12.04 LTS. For tests requiring networking capa-

bility, the machines were connected via virtual LAN with an average round trip time

of 0.105ms. Pin 2.14 build 71313 was used.

5.1.1 BSON Benchmarking

To benchmark the BSON implementation, it was compared to two existing C++

BSON implementations that were found on the BSON website (bsonspec.org). The

first implementation is the MongoDB driver [27], in particular their legacy driver.

The legacy driver was chosen as it was tested to work on both Windows and Linux

systems. The other implementation was created by Project Kenai [28], and also treats

BSON documents as a collection of elements, as opposed to the MongoDB implemen-

tation that treats BSON documents strictly as an array of characters. Two different

optimizations were added to BiSON, so to properly benchmark them, a baseline with-

out any optimizations was made, followed by both optimizations separately, then both

optimizations together. The optimizations were a memory pool (mempool) and a no

copy on write optimization (nocopy).

Four different types of tests were run to fully benchmark BiSON, which were write,

read, search and delete. Write tests benchmarked the amount of time it took to add

www.manaraa.com

23

various values to a BSON document, and then obtain a character array representing

the final written product. Read tests benchmarked the amount of time it took to

generate an implementation-specific document object given an encoded-BSON docu-

ment. Since the MongoDB implementation treats BSON objects as an array of bytes,

no read tests were run on it. Search tests benchmarked the amount of time it took to

access every object in a document. This would allow us to obtain an average access

time for an element, if one were to access an element at random. Finally, delete tests

benchmarked the amount of time it took to remove each element from a document

one at a time.

For each test type, a set of tests were generated for each non-deprecated BSON

element type. The number of elements tested were 1, 10, 100 and 1000, and for el-

ements with variable length, such as strings, a length of 100 was used. Special case

tests were given to an ”all” test, which tested all BSON elements except for arrays

and documents, an array/document test which created an inner array/document into

which was inserted every other BSON element except for arrays and documents, an

empty array/document test, and a nested array/document test, where every array/-

document was inserted into the previously inserted array/document.

A note must be made here that the Project Kenai implementation did not imple-

ment the ability to insert maxkey and minkey types.

5.1.2 Networking

Benchmarking the networking library involved comparing the runtimes of various

Pintools, with those same Pintools after adding a send of the data to the respective

analysis routines, i.e, after incrementing the count, a copy of the new count was

sent to another machine. Each Pintool was run 5 times, and an average taken. The

number of messages received by the server was also recorded.

www.manaraa.com

24

5.1.3 ReBIS

These tests were performed on the same program used in the networking exper-

iments, except with varying the number of threads created, but with each thread

performing the same amount of work. Two sets of tests were performed for each

test case, one where no CPU binding occurred, and one where the instrumentation

threads were bound to 3 cores, and the analysis thread bound to the last core. In

addition to varying the number of threads, the size of the buffer was also varied, in

order to see its effect on the execution time.

5.2 BSON

This section discusses the results of our BSON benchmarking tests. The graphs

displayed in this section should be read as follows: from front to back, we have 1,

10, 100 and 1000 elements; and from left to right in each cluster of bars, we have

baseline, mempool, nocopy, mempool + nocopy, Project Kenai, and, if the sixth bar

exists, MongoDB implementations.

5.2.1 BSON Document Marshalling

Figure 5.1 shows the results from our BSON marshalling tests. In all of the

optimization tests, adding the nocopy functionality decreased the time to obtain a

character string representing the BSON document; nocopy was faster than the base-

line, and mempool + nocopy was faster than mempool. The results show that for

the simple types whose lengths are fixed, including the empty and nested array and

document tests, for element counts of 1, 10 and 100, nocopy obtained the fastest re-

sults, with mempool producing the slowest results. This changed for the 1000 element

count, where mempool + nocopy obtained the fastest result, while the baseline was

the slowest. This was likely due to the time saved from allocating chunks of memory

at once, rather than one element at a time.

www.manaraa.com

25

Compared to the Project Kenai implementation, all BiSON implementations al-

most outperformed it in all counts, with only a couple of tests being even or slightly

slower at counts of 1 and 10. This suggests that in normal usage, BiSON will likely

outperform the Project Kenai implementation, with the difference increasing as more

elements are used.

As expected, MongoDB was the fastest implementation,in large due to its treat-

ment of BSON documents as an array of bytes, rather than like our treatment of

BSON documents as collections as elements. This allows the MongoDB implemen-

tation to skip our intermediate step of inserting elements into a document before

writing them to the buffer.

Figure 5.1.: Performance results for writing various datatypes to a BSON-encoded

document.

www.manaraa.com

26

5.2.2 BSON Element Searching

Figure 5.2 shows the results of our element searching tests. All of the BiSON

optimizations and baseline performed similarily, with only a few % difference between

then. Not surprisingly, MongoDB performed the worst in these tests. Our storage

of elements in an intermediate data structure enables much more efficient search

algorithms compared to MongoDB’s linear search. However, our implementations

were slightly slower than Project Kenai’s at greater element counts.

Figure 5.2.: Performance results for searching a BSON document.

5.2.3 BSON Document Demarshalling

Figure 5.3 shows the results of our BSON demarshalling tests. Unfortunately,

many of the Project Kenai tests here failed, by throwing a segmentation fault, or

otherwise giving inaccurate results, making comparisons for counts of 10, 100 and 1000

largely useless. When the Project Kenai implementation produced usable results,

www.manaraa.com

27

they were between 2X and 100X slower than their mempool + nocopy counterpart.

Overall, our mempool implementations performed the best, due to the ability to

allocate large chunks of memory at once, rather than one element at a time.

Figure 5.3.: Performance results for reading a BSON-encoded document containing

various datatypes, and create an implementation specific BSON document.

5.2.4 BSON Element Deletion

Figure 5.4 shows the results of our element deletion tests. Of the BiSON optimiza-

tions, the mempool implementations performed slightly worse than without the mem-

ory pool. This suggests that our code for recycling the object’s memory is slower than

that to simply delete the object. Compared to the Project Kenai implementation,

mempool + nocopy varies from being about the same speed for 1 and 10 elements, to

being hundreds of times faster for 1000 elements. The MongoDB implementation was

the fastest for 1 element, but slows down as more elements were deleted, becoming

hundreds of times slower for 1000 elements. This was due to MongoDB having an

www.manaraa.com

28

extremely inefficient deletion routine, having to rewrite the entire document minus

that element. Interestingly, the Project Kenai implementation was the slowest. In

addition, it was nonintuitively difficult to delete all elements from a document; it had

to be done in reverse order, or else their indexing scheme would break.

Figure 5.4.: Performance results for deleting various datatypes from a BSON docu-

ment.

5.2.5 Ease of use

Overall, all libraries had a similar ease of use, except for the issue with deleting

elements in the Project Kenai implementation. However, our implementation does

provide some extra benefits compared to the MongoDB implementation. With the

MongoDB implementation, in order to create an inner document/array, the most

efficient method is to call a subobjStart or similar method, which returns another

builder to be used for writing to that inner document/array. Some interesting issues

www.manaraa.com

29

arose from this. First, the user must keep track of which builder is which as created

documents/arrays must be closed in the correct order, since incorrect closure will

result in parsing issues. Secondly, the user could also accidentally forget to close

an inner document/array, which would distort the layout of the documents/arrays.

Lastly, there is nothing stopping a user from writing to a builder from a previous

level while it is not the current ’active’ builder. While BiSON is slower in many

cases, it does provide a higher level of abstraction, preventing the user from having to

deal with these lower level issues. In fact, BiSON does not require users to explicitly

close any documents/arrays, that is automatically done whenever it is required. In

addition, so long as simultaneous write to a single document/array is not done, a user

could simultaneously write to separate documents/arrays that are contained within

the same document/array. This fact can lead to situations where writing to a BiSON

document is much faster than to a MongoDB document.

5.3 Networking

As seen in Figure 5.5, the increase in overhead varies greatly between Pintools.

The main cause of this variation is due to how intrusive the Pintool is. Inscount0

was the most intrusive, performing instrumentation at an instruction level, and as

a result, resulted in the largest amount of overhead. Compare this to the other

inscount Pintools, which operate at a trace level, and had much lower overhead,

and the malloc count Pintools, which operate at a routine level, and had even lower

overhead. However, this does not paint the whole picture. Figure 5.6 shows that

an increase in the number of messages sent causes an increase in the overhead, and

that the relationship is fairly linear. However, the proccount Pintool seems to be an

outlier, requiring almost half the time expected to execute. Including all of the points,

a linear regression returned an R-squared value of 0.85. If we treat the proccount

Pintool as an outlier, and plot a new linear regression line, we now obtain an R-

www.manaraa.com

30

squared value of 0.99. This suggests that users can use the amount of messages they

plan on sending/receiving to estimate the overhead of their tool.

Figure 5.5.: Graph showing the increase in overhead caused by adding a send of the

data in every analysis routine.

5.4 ReBIS

Table 5.1 shows that given a large enough buffer, the system can perform better

without CPU binding than with CPU binding. However, as the table shows, an

increasingly larger buffer is needed as the application spawns more threads to maintain

this improved performance. What isn’t shown, is that buffer size has little effect on

the runtime of the system with CPU binding. This is more important in situations

where memory is limited, such as in embedded systems, or where the application is

www.manaraa.com

31

Figure 5.6.: Graph showing the effect of increased messages sent vs the increase in

overhead.

www.manaraa.com

32

extremely memory-intensive. The drastic change as you go down the table is caused

almost entirely by variations in the no binding tests.

Comparing the execution times of our system in Table 5.1 with the more naive

inscount0 implementation shown in figure 5.5 (actual runtimes not shown), our system

managed to improve the runtime by about 1098% for a program that spawned 20

threads. For perspective, this was only about 486% slower than a vanilla inscount0

Pintool written using Pin++ that only increments a count, with no data collection

or sending of data.

Table 5.1.: % diff. runtimes of ReBIS with vs. without binding of instrumentation

and analysis threads to separate CPU cores.

Buffer size
Number of threads

8 20 40 240

50 -7.990 -24.055 -43.064 -74.041

100 -1.743 -11.003 -18.324 -59.521

250 0.836 5.802 2.469 -27.793

500 4.054 9.009 12.956 -2.597

www.manaraa.com

33

6 CONCLUDING REMARKS

Dynamic binary instrumentation (DBI) is a powerful concept that enables users to ob-

tain detailed information about a running program without modifying the program’s

original source code. The main issue, however, with DBI is the overhead associated

with the non-intrusive instrumentation approach. Prior research techniques have been

proposed to lessen the overhead, most of which use parallelization and buffering data.

In this thesis, a novel technique was introduced that incorporates data buffering,

binding of instrumentation and analysis threads to separate CPU cores, and the

introduction of a lightweight analysis routine replacement that offloads collected data

over a network. Using our technique, we were able to create an inscount Pintool

that ran around 11X faster than a naive inscount Pintool that sent data after every

instruction, and was less than 5X slower than a native inscount Pintool that contains

no analysis routine. Our framework was also found to require much less memory to

achieve improved runtimes with CPU binding than without. We also learned that

one analysis thread can handle at least three instrumentation threads when collecting

data after every application instruction (i.e., the use case that has the most overhead

in DBI).

Based on our results and the functionality provided by ReBIS, here are potential

future research directions:

• Realtime Feedback Using our framework, it may be possible to further re-

duce overhead by developing some form of feedback system. Using information

collected on the application and the machine performing the instrumentation,

it may be possible for the server to reconfigure the tool improve performance.

Such reconfiguring could include spawning more analysis threads, modifying

buffer sizes, or any other task to improve or modify instrumentation.

www.manaraa.com

34

• Distributed Instrumentation Another future research direction is the ex-

ploration of how ReBIS can aid in overhead reduction via a distributed instru-

mentation system. In this context, each node instruments the same application

in tandem, sending the data to a central server. These nodes would then be

able to share the overhead by using some sampling algorithm, or having the

server act as a scheduler to determine which part of the application each node

instruments. This way, no single node instruments the entire application, but

together, the nodes reach 100 % coverage.

• Instrumentation of Distributed Systems Using our framework, it may be

possible to more easily instrument distributed systems. Given the nature of

distributed systems, our inclusion of a networking library into our framework

should allow for users to simultaneously instrument all nodes of a distributed

system and send that data to a central processing server more easily. However,

our framework is currently geared towards more general instrumentation needs.

It may be possible to further extend it to more easily fit the needs of the

distributed environment.

ReBIS has been integrated into Pin++, is freely available in open-source format, and

can be downloaded from https://github.com/SEDS/PinPP (accessed May 6, 2016).

www.manaraa.com

REFERENCES

www.manaraa.com

35

REFERENCES

[1] Kim Hazelwood. Dynamic binary modification: Tools, techniques, and applica-
tions. Synthesis Lectures on Computer Architecture, 6(2):1–81, 2011.

[2] Harish Patil, Cristiano Pereira, Mack Stallcup, Gregory Lueck, and James
Cownie. Pinplay: A framework for deterministic replay and reproducible analysis
of parallel programs. In Proceedings of the 8th Annual IEEE/ACM International
Symposium on Code Generation and Optimization, CGO ’10, pages 2–11, New
York, NY, USA, 2010. ACM.

[3] Qin Zhao, Rodric Rabbah, Saman Amarasinghe, Larry Rudolph, and Weng-Fai
Wong. How to do a million watchpoints: Efficient debugging using dynamic in-
strumentation. In Proceedings of the Joint European Conferences on Theory and
Practice of Software 17th International Conference on Compiler Construction,
CC’08/ETAPS’08, pages 147–162, Berlin, Heidelberg, 2008. Springer-Verlag.

[4] Aamer Jaleel, Robert S. Cohn, Chi-Keung Luk, and Bruce Jacob. Cmp$im: A
pin-based on-the-fly multi-core cache simulator. In Proceedings of the Fourth
Annual Workshop on Modeling, Benchmarking and Simulation, pages 28–36,
2008.

[5] Moshe (Maury) Bach, Mark Charney, Robert Cohn, Elena Demikhovsky, Tevi
Devor, Kim Hazelwood, Aamer Jaleel, Chi-Keung Luk, Gail Lyons, Harish Patil,
and Ady Tal. Analyzing parallel programs with pin. Computer, 43(3):34–41,
March 2010.

[6] Pranith D. Kumar, Anchal Nema, and Rajeev Kumar. Hybrid analysis of exe-
cutables to detect security vulnerabilities: Security vulnerabilities. In Proceed-
ings of the 2Nd India Software Engineering Conference, ISEC ’09, pages 141–142,
New York, NY, USA, 2009. ACM.

[7] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Ge-
off Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin:
Building customized program analysis tools with dynamic instrumentation. In
Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’05, pages 190–200, New York, NY, USA,
2005. ACM.

[8] Nicholas Nethercote and Julian Seward. Valgrind: A program supervision frame-
work. Electronic Notes in Theoretical Computer Science, 89(2):44–66, 2003.

[9] Derek L. Bruening. Efficient, Transparent, and Comprehensive Runtime Code
Manipulation. PhD thesis, Massachusetts Institute of Technology, Cambridge,
MA, USA, 2004.

www.manaraa.com

36

[10] Gang-Ryung Uh, Robert Cohn, Bharadwaj Yadavalli, Ramesh Peri, and Ravi
Ayyagari. Analyzing dynamic binary instrumentation overhead. In WBIA Work-
shop at ASPLOS, 2006.

[11] Jungwoo Ha, Matthew Arnold, Stephen M. Blackburn, and Kathryn S. McKin-
ley. A concurrent dynamic analysis framework for multicore hardware. In Pro-
ceedings of the 24th ACM SIGPLAN Conference on Object Oriented Program-
ming Systems Languages and Applications, OOPSLA ’09, pages 155–174, New
York, NY, USA, 2009. ACM.

[12] Tipp Moseley, Alex Shye, Vijay Janapa Reddi, Dirk Grunwald, and Ramesh Peri.
Shadow profiling: Hiding instrumentation costs with parallelism. In Proceedings
of the International Symposium on Code Generation and Optimization, CGO
’07, pages 198–208, Washington, DC, USA, 2007. IEEE Computer Society.

[13] James H. Hill and Dennis C. Feiock. Pin++: An object-oriented framework
for writing pintools. In Proceedings of the 2014 International Conference on
Generative Programming: Concepts and Experiences, GPCE 2014, pages 133–
141, New York, NY, USA, 2014. ACM.

[14] Steven Wallace and Kim Hazelwood. Superpin: Parallelizing dynamic instrumen-
tation for real-time performance. In Proceedings of the International Symposium
on Code Generation and Optimization, CGO ’07, pages 209–220, Washington,
DC, USA, 2007. IEEE Computer Society.

[15] Dan Upton, Kim Hazelwood, Robert Cohn, and Greg Lueck. Improving in-
strumentation speed via buffering. In Proceedings of the Workshop on Binary
Instrumentation and Applications, WBIA ’09, pages 52–61, New York, NY, USA,
2009. ACM.

[16] Danilo Ansaloni, Walter Binder, Abbas Heydarnoori, and Lydia Y Chen. De-
ferred methods: accelerating dynamic program analysis on multicores. In Pro-
ceedings of the Tenth International Symposium on Code Generation and Opti-
mization, pages 242–251. ACM, 2012.

[17] Pin 2.14 User Guide. https://software.intel.com/sites/landingpage/pintool/
docs/71313/Pin/html, (accessed May 6, 2016).

[18] PinPP Repository. https://github.com/SEDS/PinPP, (accessed May 6, 2016).

[19] BSON. http://bsonspec.org/, (accessed May 6, 2016).

[20] JSON. http://json.org/, (accessed May 6, 2016).

[21] OpenDDS. http://opendds.org/, (accessed May 6, 2016).

[22] Douglas C. Schmidt. The adaptive communication environment: An object-
oriented network programming toolkit for developing communication software.
pages 214–225, 1993.

[23] Douglas C. Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann.
Pattern-Oriented Software Architecture: Patterns for Concurrent and Networked
Objects, volume 2. John Wiley & Sons, Inc., New York, NY, USA, 2nd edition,
2000.

www.manaraa.com

37

[24] Douglas C. Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann.
Pattern-Oriented Software Architecture: Patterns for Concurrent and Networked
Objects, volume 2. John Wiley & Sons, Inc., New York, NY, USA, 2nd edition,
2000.

[25] MongoDB. https://www.mongodb.com/, (accessed May 6, 2016).

[26] MongoDB architecture guide. http://s3.amazonaws.com/info-mongodb-com/
MongoDB Architecture Guide.pdf, (accessed May 6, 2016).

[27] MongoDB mongo-cxx-driver. https://github.com/mongodb/mongo-cxx-driver/
tree/legacy, (accessed May 6, 2016).

[28] Project Kenai BSON C++ API. https://kenai.com/projects/mongoviewer/
pages/BSON, (accessed May 6, 2016).

